Ciirnan e e UCRL-83791 Rev. 1
PREPRINT

VERIFICATION OF TIMING CONSTRAINTS
ON LARGE DIGITAL SYSTEMS

Thomas M. McWilliams

This paper was prepared for submittal to the
Seventeenth Desigh Automation Conference,
Minneapolis, Minnesota, June 1980

April 7, 1980

This is a preprint of & paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial products,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement
recommendation, or favoring of the United States Government or the
University of California. @ The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

P e - - .

Verification of Timing Constraints
on Large Digital Systems

Thomas M. McWilllams

Lawrence Livermore Laboratory
University of California
and

Computer Scienca Department
Stanford University

Abstract

A new approach to the verification of the tming constraints
on large d systems has been developed. The astocated
algorithm is computationally very efficlent, and provides early and
continuous feedback about the tming of synchronous
sequential drcuits as they are designed. 1t provides means for
conveniently verifying the design in sections, permitting the
section-by-section timing verification of designs which are too large
to examine as a unit on existing computer systems. A system using
this algorithm has been implemented, and has been used to verify
the timing constraints on the design of the S-1 Mark IIA processar.

1 INTRODUCTION .

In order that a digital systen perform correctly, a er
must take into account the ible propagation delays associated
with each of the elements making up the system. If a path through
a digital systern has either too long or too short a deﬁy assoclated
with it, then the value of the circuit may be wrong at a critical L,
causing the circuit to calculate an incorrect result This is called a
dming error. Digital logic as it is currently implemented is
intrinsically susceptible to such errors, and their complete elimination
from all portions of a diiital logic system is essential to a realistic
guarantee that the logic will perform rellably and reproducibly under
all variations in data and programs. This paper addresses the early
and efficent detection of these timing errors, so that digital logic
dutglen can henceforth Prequentl&nexamme their designs for them
as the design proceeds, thereby finding timing errors before the
design progresses so far that the errors become dg‘ncult to eliminate.

A system which uses these ideas has been implemented and is
called the SCALD Timing Verifier. It inputs the d of 2
sgchmous sequential system given in the SCALD Hardware

ption Language [6), and analyzes it, comprehensively searching
it for timing errors. SCALD (Stuctured &nputer-mded Logic
Design) is a complete computer-aided design system which Inputs a
graphics~-based, hierarchical dexription of a digital logic design, and
thereupon generates a complete set of low-level documentation which
includes that necessary to Implement it in hardware (6,71 The
Timing Verifler performs a complete timing constraint verification
based on the minimum and maximum qdmpaganon delays of the
dreuit components, their set-up and hold times, minimum pulse
width constraints, and wire delays.

One of the principal features of the Timing Verifier ls its
ability to verify designs by modules. This not only permits its use on
computers with limited memory size, but allows timing
constraines to be checked as a design progresses, even on a
day-by-day basis. This is g:ﬂmluly important in that it aliows
timing errors to be corrected before they have a chance to prop
their effecs throughout the duﬂor to cause major changes to be
required late in the design. It supports an accurate estimation
of the ‘g\:le time of a digital logic machine before its design ls
completed.

NOTICE

I hix report was prepared as an account of work sponsored by the United
Grates Government. Neither the United States nor the United States
epartment of Energy, nor any of their employees, nor any of their
nntractors, subcontractors, or their employees, makes any warranty,
.spress o1 implied, or assumes any legal liability or responsibility for the
~curacy. completeness or usefulness of any information, apparatus,
- ‘oduct or process disclosed, or represents that its use would not infringe
irivately-owned rights.

Reference to a company or product name does not i.mply. approval or
-ecommendation of the product by the University of California or the U.S.
iepariment of Energy to the exclusion of others that may be suitable.

2 PREVIOUS APPROACHES

There have been a number of previous approaches to the

va'lf;?dﬂon of timinE‘ constraings in l‘:1“‘:!;'1!11 sy:::;u; [:;1;3; lfﬁn b;

into two m: nn:;iorles: timulation ,5,10] an
g::t-cae path analysis (2,1

The logic simulation approach Tum several problems. It
requires either a complete design including any microcode and
diagnostics, or some way of generating patterns to drive the
undefined signals. Wﬁﬂnﬁ until the design is completed to start
simulation presents the probiem that bugs are not found until late in
the design cycle Generating patterns (o drive undefined signals is
very Ume~consuming and d It, especially when the patterns need
to go through the “worst-case” set of states. Simulation is also a very
in t way of finding timing errors, because of the need to run
through a large number of states in order to text all of the
“worst timing paths, In fact, for most large digital systems, it is
impessible to have a high degree of confidence that the worst-case
states have all been tested, and both the human and computational
efforts required to do simulation are orders of magnitude greater
than those required by the Timing Verifier

The worst-case path analysis approach examines all paths
through the combinational logic between ters or latches,
searching for the longest and shortest paths. is approach only
works on fairly simple combinational logic, and tends to fall down on
complex synchronous sequential circuits It is also computadonally
expensive, but does provide feedback to the designer early during
the design cycle, without the need to generate detailed test parterns.

In contrast, the SCALD Timing Verifler eliminates most of
the problems assoclated with these approaches, allowing the design's
tming properzies to be verified as the design proceeds, without the
need to generate complex test patterns. It aiso uses a computationally
efficlent algcrithm to cover all of the states needed to identify and

uandtate ail timing errors. Handling drcuits In which logic
ularion of portians of the circuit is needed to understand the
detailed timing is another of its capabilities.

3 THE SCALD TIMING VERIFIER

The SCALD Timing Verifier operates on synchronous
sequential systems, and ch all of the logic-level timing errors
which occur within those system. These include the non-satisfaction
of the set-up, hold, or minimum pulse width time requirements for
registers, latches, and other complex funcions. [n additon to these
errors, It checks the timing on control signals which are ANDed with
clock signals to verify that they are stable while the clock is asserted,
in order t avoid any posible hazard conditions on
control-conditioned clock lines. The Timing Verifier takes into
account both the minimum and maximum propagation dela‘s of all
of the system’s components, including the Interconnections een
them.

81 THEORY OF OPERATION

Within synchronous sequential circuits, mast signals can be
changing only during particular pans of the ciock period. For
example, it may be possible for a particular signal to be changing
only during the second half of the clock cycle, given thac all of the
components making up the system are within their timing

fications.

sped

ter which can ba clocked only at 2 particular
time within the period. The output of the register can change
only during a short time after it is clocked, 50 that it is guaranteed to
be stable for the mtire clock period except around the point at
which it is clocked. The output of a gate driven from this register
can then be changing only during an interval of time determined by
its propagation delay and that of its connection to the register and
the time when the cutput of the register is changing.

Determining when 2 given signal may be changing and when
it is stable within the clock period Is the key step in the operation of
the Timing Verifir. Onca this has been accomplished, it Is
relatively easy to check all of the Hming constraints placed on the
drcuit. For instance, in order to check the set-up and hold times on
a rﬁhur, all the Timing Verifler has to do is to see if its input
could be changing at a time when it might be clocked.

If the dming of the circuit never depended on the values of
egnah. but only on when they were changing or stable, the Timing
erifier would be refatively simple Clock signals have a value

Consider 2

which is periodic, and have the same value every cycle, so they are
eusy to manage The signals which are difficuit to treat are those
whose values affect the circuit timing, and which have different
values during different clock cycles. For example, a control signal
which determines whether a is clocked during a given cycle
affects whether the output of the register might change that cycle. If
the drcult cl\mends on the register not changing every cycle, then the
Timing Verifier must do cass analysis in order to avoid generating
false error messages, uired to check the timing

It is therefore r
both when the control signal Is true, and when it is false This i3

potentially a very time-consuming proceas. In practice it has mrned
aut not to be so, because mast signals have a “warst~case™ state. For
example, the worst—case for mont is to assume that they are
clocked every cycle Only for those sitiations In which both the
clocked and unclocked cases need to be checked separately must the
Timing Verifier examine both of them. In such cases, the Timing
Verifier remembers the values of all the signals which are not
zﬂ‘eczade:dy the signal which is having case analysis done on it It
then needs to recompute only the signals affected by the case
analysis.

For a given circult, the Timing Verifier has some number of
cases to analyze Which signals require case analysis and what cases
need to be evaluated for these signals are specified by the designer.
This might apcrear to be a posuibly quite inefflcent process, but it
has been found in the design of the S-1 Mark [JA processar, that
very few cases need (0 be sa analyzed in practice.

The basic procedure followed by the TlminE Verifier in doing
case analysis is to take the first case specified by the designer, and to
calculate for each signal in the system when it could be changing
during the clock cycle. Once it hay done this, it checks for passible
violarion of timing constraints for that case. It then goes on to the
next case specifi er to be checked, recomputing only
those si which are different from the previous case, and
checking for any possible timing errors in that case. Continuing this
process, it checks all of the cases, thereby performing a complete
check of the circuit for timing constraint violations.

by the des

32 CIRCUIT CLOCK PERIOD

Circuits being verifled must contain one basic clock, whote
period is specified to the Timing Verifier. If different pars of the
circuit being verifled run at different clock rates, then the period
specified to the Timing Verifier is the least common multipie of the

ifferent clock perlods. For example, a processor might have an.
instruction unit which has a period of 30 nsec and an execudon unit
which has a period of 15 nsec. In this case, the periad ied to
the Timing Verifler would be 30 nsec. Clock signals which occur
within the circuit may occur at any phase within the basic clock
period.

3.3 CIRCUIT MODEL FEATURES

Circuits are described to the Timing Verifier in terms of gates,
registers, latches, set-up and hold time constraints, and minimum
pulse width constraints. More jex functions are then defined in
terms of these Egmidva. through the use of graphics-based macras, .
using the SCALD Hardware Description Language [6,7] .

The following sections define the values which are used to

::sr;:;t ';l;e behavior of si‘g"l‘uls.h They include the definitions of
idve components with which the design i

Timing Verifier. por g7 13 specified to the

331 Value System Used To Represent Signals

At any instant In tme, every signal in the dreuit being
timing-verified has exactly one of seven values, with the follawing
associated meanings:

Yalue Meaning

0 false, or 0

1 true, or {

S or STABLE signal is stable, not changing

C or CHANGE signal may be changing

R or RISE signal is going from ze¢ro to one
For FALL signal Is from one to zero
U or UNKNOWN inittal value used for all signals

The value of 2 n:,lgml over the clock period is represented by a
finked list, each node of which specifies a signal value and the time
duration of that value The sum of the durations of all the nodes in
the list must exactly equal the period of the circuit being analyzed.

When a signal agates through a or wire where it is
delayed by a vmablepﬁoun: of nmg,h :hmg‘?km is added to the
al representation, denoting the uncertainty in when the signal
will subsequently change. This skew is'maintained separarely in the
signal rz;resenunm to preserve information about the width of
ulser This is done to avoid incorrect assertions by the Timing
erifier that minimum pulse width requirements have not been met.
If two or more changing signals are combined, the skew of the
resuiting al cannot be represented separately. It is therefore
incorpor: into the signal representation by using the CHANGE,

" RISE, and FALL values

332 Definition of Combinational Functions

This section defines the basic combinational functions used by
the Timing Verifler. All other combinational functions may then be
defined In terms of these basic functions.

The following tables deflne the INCLUSIVE-OR (OR
AND, EXCLUSIVHE-OR (XOR), CHANGE {(CHG), and l(\lo%
functions far the seven-value logic system used in the Timing

Verifier.

These functions are uniformly deflned o give warst—case
values For example, when the signal values “STABLE® and
“RISING” are OR'ed together, the resultant signal value given is
"RISING”. This is because the output in this case will either be
stable or a rising edge, and the rising edge is the worst—casa value

AORS

AB—--G].Sl.:l-'IFU
t g1 SCRFU
1 1111111
S S 1 SCRFU
c cl1 ccccuUu
BlEjEEic
v Uuluvuvuuuvu
A AND 8

‘B—.BISCRFU
t 8 9 8 8 8 8 8
1 g1 SCRFU
g g8 S 8CREFU
c B CCCCCU
lgEEcRcd
u e UUVuUuvuUuUuy

A XOR B
LB 1SCRFU
t O%SCHFU
Pl ThEERAY
IREE AR R
R ﬁFCCCEU
F FRCCECOC u
U U uuvuvuuuuyu
ACHG B
AB-O’ISCHFU
*SSSCCCU
b§ S S S CECCWU
1R L
R € C cC u
F CCCECCU
1] Uuuuuuu

NOT A

A

51

S S

[c

R F

F R

U 1]

The output of the “CHANGE" function has the value
‘UNDEFINED” if any of its inputs are undefined. If all of its
inputs are defined, then it has the value “CHANGE” if any of its
inputs are changing; otherwise it has the value "STABLE". Itisa
useful function in modeling complex combinational logic, where the
actual function being performed is not significant to the verification
process. Common examples are in the modeling of parity trees and
adders, in which cases the Timing Verifier cares only when the
outputs of these drcuits are changing, not about their actual values.
This results in a great reduction in the complexity of adequately
modeling these functions.

3.3.3 Definition of Registers and Latches

The Timing Verifler has two models for registers which are
shown in Figure i—l. The first reﬁisur model just has "CLOCK'

and "DATA" inputs, and ‘can change ity output only on the
rising-edge of its "CLOCK?” input The output of the register will
be set to the “CHANGE" state during the time following the
rising-edge of "“CLOCK" as determined by the minimum and
maximum delays of the register. Unless the “SDATA” Input is a true
or faise during the rising-edge of the "CLOCK" inpug, the output
will be set to the “STABLE" value for the rest of the cycle
otherwise, it will be set to the value of the “DATA" input. The
example in Figure 3-1 shows a minimum delay of 1.0 nsec and a
maximum delay of 3.8 nsec being specified for the register, which is
32-bits wide.

The second register shown in Figure 3-1 is the same a3 the
first, except that it has asynchronous “SET” and “RESET" inputs in
addition to the "DATA" and "CLOCK" inputs. The minimum and
maximum propagation delays from all of the inputs are the same,
and are given by the delay K‘mmpcg of the register. If chips with
different propagation delays different inputs are to be modeled,
then buffers are used on the various inputs to insert the proper
delays. Primitives with different delays from different inputs could
be lmplemented to improve execution efficlency, if desired.

The Timing Verifler has two models for latches, as shown in
Figure 3-2. The "OUTPUT™ of the first lazcch follows the "DATA”
input when the “SENABLE" input is high, and holds the last value
q;iven bg the “DATA” input when the “ENABLE" input iz low.

he "SET" and "RESET" Inputs on the second larch in Figure 3-2
operate the same as for the register, and override the operaton of
the latch wh‘:ﬂl they are :lor;-um. The mi::m::mhmd maxjimum
propagation delay from all of the inputs on the latch are the same,
mrglpi.s given by the "DELAY" pmpel::y. For the example shown in
the Figure, the minimum props?:ion delay is 1.0 nsec, and the
maximum propagation delay is 3.5 nsec.

EDGE TRIGGERED £0GE TRIGGERED
0-TVPE REGISTER 0-TYPE REGISTER
WITH SET AD PESET
328 nESET p-_
EG €T N REG RS
[-1] ey § R2
OUTAUT DATA QUTRT
m__jx caare T ! oeLare T
1.0,).8 1.6,).8
[« 3
LS

!

ame |

Figure 3-|
Two register models used by Timing Verifier

LATCH LATOH WITH
SET ANO RESET INPUTS
38
LATCH L O wcnzn
%] ST ___ s Ty
-1 I vl —oumPyr gaVE— — sy
DELAYe Lomar.
1.0,3.6 1.6,3.5

w——j“_‘ 'wa.sm]'

Figure 3-2
Two latch models used by Timing Verifier

3.3.4 Setup and Hold Time Checkers

There are two primitive functions, shown In Figure 3-3, whic
are used 10 check set-up and hold times, The first checker is calio]
1 “SETUP HOLD CHK", and checks to see thar the signal
cnnected to the “T” input is stable for a period around the rising
edge of the °CK” (nput The “SETUP” property specifies the set-up
time interval, which is the length of time the input signal must be
stable before the rising edge of the clock Input e "HOLD"
property specifies the hold tume interval. This is the length of time
':ll:;ul:put signal must be stable after the rising edge of the clock

The second primittve shown In Figure 3-3 is a "SETUP R
HOLD FALL CHK” primitive. It checlkgsu the set-up tme intervaxlsof'
the input before the rising edge of the clock input, and the hold time
interval after the fallin, edrge of the clock input. It also checks to see
that the input °T" is stable for the entire time interval over which the
;l:-.: e:lln!::“ ;Sr!ffy i.:hu-u;.m This type of set-up and hold checker is

e ing consraints on campo
ory chips g ponents such as

P~ k-] l
WP HLD G SENP UK |
o " gmegn | W00 FAL o
SETUP=2, 5¢ SENF=2.5;
LD -1, 8 HOLO «=1.6 :
[-¥. .3 Qotk
- re 3-3

Figu
Set-up and hold time checkers used by Timing Verifier

$3.5 Minimum Pulse Width Checkers

The minimum pulse width checker is used to specify
verification of minimum pulse width constraints. Clock inputs to
components typically have a minimum pulse width requirement
which says that when they sv high, they must stay high for some
specified interval of time, and that when they go low, they must stay
low for some specified time interval Figure 34 shows the “MIN
PULSE WIDTH" primitive, which shows a minimum hFh pulse
width of 5.0 nsec being specified, as well as a minimum low pulse
width of 3.0 nsec. :

PN PULEE UIDTH|

HIGHS.8;
LG 1.0

Figurs 3-4
Minimum pulse width checker

3.4 SIGNAL ASSERTIONS

In order to be able to analyze parrially designed drcuits, the
Verifler must have timing ns on as-yet undefined signals.
Undefined signals with no assertions are taken to be always stable, to
prevent them from giving rise to numerous spurious timing error

messages,

Two ?pa of assertions are used for specifying clocks, and one
1s used for defining the behavior of control and data signals.

3.4.1 Clock Assertions

There are two auinries of clock signals: precision and
non-precision. The only difference between precision and
non-predsion clock specifications is the default skew used by the
Timing Verifler when none is explicitly given by the designer. Skew
is generated by che variation in the interconnection delay to the
different parts of a large digital system and by the variations in
delay berween the different buffers used in the clock generation. In
the design of a large digital system, these variations can become
quite large, and may degrade r:rformance unacceptably. To reduce
such skew to within acceptable limits, the shorter clock paths can
have additional delays deliberately inserted into them. Because the
delays in a clock distribution system may vary between successive
implementarions of a design, in many cases it must be adjusted by
hand, using some type of ad justable delay for each of the clock lines.
By use of this technique, the skew can be reduced to below some
designer-specified value. In order to verify the tming in a design
which has been so de-skewed, it is necessary to describe in detail
how the clocks will be ad justed within the design specification. A
number of features have been provided to make this task as easy as
poassible, and will be described in the section on evaluation directives,

If a clock signal is ad justed to some specified skew, then an
assertion can be given within its signal name signifying that fact
Asserdons are given at the end of signal names and are preceded by
a period. They are considered part of the signal name by the rest of
the SCALD system, which thereby guarantees that all. of the
assertions for a given signal are consistent by definition.

The format for the assertions for the predsion and
non-precision clocks are

<precision clock> 311« <signal name> .P cassert spec>
<non-precision clock> ti1= <signal name> .C <assert spec>
<aseert spec> t3« <value specification>
<sken specification> <polarity assertion>

<value speclfication> t1= <time rangs> |
<tiwe range>» , <value epecification>

i11m <time> | <time> - <time>

| «time> + <tinme>

<tima> t1= «<resl number>
<skeu specification> sse | (<minus skeu>,<plus skew>}
<ainue skew> 1ie <negative raal or zero>
<pius skauw> 1w <positive real ar 2ero>
<polarity assertion» ::=s | L

<tins range>

The time units in which the clocks are specified are normally
some fraction of the cycle time. For example, one eighth of the cycle
Is the basic clock interval used in the design of the S-1 Mark 1A
g , Which Is discussed In greater detail subsequently.

pecifying clock intervals as fractions of the cycle time (rather than
In absolute time unlts) has the basic advantage of allowing the
relative tming within the design to be scaled automatically if the

cycle time is changed.

An exampie of clock specification is
XYZ C+6L

which states that the clock signal goes from high to fow at time 4,
and from low to high uume‘nghe signal)

XYZ .C2-3,5-8

is high from 2 to 3 and from 5 to 8, and is low for the rest of the
clock cr:le. If a single time is given instead of a range, a time
interval of one clock unit is assumed. For example,

XYZ C25
{s equivalent to ths previous signal The signal
XYZ P25

is again equivalent, except that it is a precision clock, which means
that it has a different default skew. In general, it was found in the

of the S-1 Mark [IA processor that having two types of
clocks — those that have been ad to reduce skew, and those
that haven't — was convenient; The-motivation was to only ad just
those clocks which must be ad justed, in order to reduce cost.

If a plus sign is given between the two time variables instead
of the minus sign, then the second number specifies a width in
nanoseconds, rather than the time of the end of the pulse in clock
unita. This allows widths of clocks that don't scale with the
cycle-time of the circuit to be specified. For example,

XYZ PZF10°

a clock that goes high at clock unit time 2, and stays high
far 10.0 nsec.

8.4.2 Stable Assertions

The stable assertion is used to specify when a control or data
signal is stable, and when it may be changing. Its general form is

<signal name> S <value specification> <polarity assertion>

For example, the name XYZ S4-8 says that the signal is stable from
time 4 to time §, and may be changing during the rest of the cycle.

This type of assertion has several uses First, it allows the
designer to his assumpdons about when signals are valid (i.e.,
not changing) as he creates them in the design process, and those
assumptions will be used by the Timing Verifler undl the signals are
generated by hardware me so generated, the designer’s
initial timing assertion ls ch against the timing of the actual,
generated signal, and an error message is output if the assertion is

violated. In the design of the S-1 Mark A processor, most signal
names have stable assertions in them. This greatly improves the

readabi of the design, since a signal name explicitly includes a
Aps:malzn of when ::gﬂ valid o PRy

Putting these “stable™ assertions on interface signals is the key
to the ability to verify a design in sections. After each section is
verified, SCALD checks to see that all interface signals have the
same timing assertions in the sections which they connect together.
If no such section has a tming error and if all of the interface
signals of all sections have consistent assertions on them, then the
entire design must be free of timing errors. .

i DATA . $8-4¢9: 1)

WAITE FOM_.98-601D |

R0 _FOR . 94-% 01 D

L T I
101952

Reree: I t |__oureyree:an

REG OX

WITE S86L o O L

Pl

-5

Ezample l‘n‘:nn'o definition

5.4.3 Interconnection Delay Specification

Taking into account the effects of interconnection delays
throughout the design process is essental If maximum system
performance is to be artained when the design is completed. The
consideration of these delays needs to be approached from two
different points of view, depending on whether or not the design is
far enough along to allow the actual interconnection delays to be
calculated. If the interconnecton delays can be calculated from
detailed simulation of the transmission line properties of the
interconnectons, then these delay values are used by the Timing
Verifler when checking timing constraints within the dest If the
interconnection delays are not yet known, the Timing Verifier uses a
default interconnection delay for each signal If the designer wishes,
he can spedfy within the design a range for the interconnection
delay for a specific signal, which will then override thé default
specification.

8.5 EVALUATION DIRECTIVES
Evaluation directives are used to specify:

@ That the control signals being ANDed with a given clock
signal must be stable while the clock is . This s
used to detect possible hazards that could be generated on
the output of a gate, resulting in false clocking of the
crcuit which the gate controls. qn addition, these directives
cause the Timing Verifler to assume that the control
uﬁ:nala will be enablinf the gate, so that its output value
will be determined only from the value behaviar of the
clock signal.

® The tuning of clocks in systems which have hand-ad justed
clocks to reduce skew. Additonal information is needed
here since the prinus don't specify how the clocks are
ad justed.

Consider the crcuit shown in Figure 35 The clock signal
"CK .P2-3 L" is being ANDed to the control signal "WRITE S0-6
L" to generate a write-enable pulse for the RAM array. The “&H"
directive specifies checking that the control signal “WRITE S0-6 L”
is scable during the interval over which the clock is asserted, to
ensure that the “writs” will be either solidly enabled or completely
disabled. In addition, this directive says the timing specified by the
clock signal is 1o be ad justed so that it refers to the time at which the
outpus, rather than the input, of the gate changes This corresponds
to a circuit in which the clock signals are ad justed to eliminate the
skew generated by gating of the clock lines. The last thing that the
“&H" directive does is to tell the Timing Verifier to ignore the vaiue
of the "WRITE S0-6 L" signal, allowing the clock signal to always

propagate through the gate.

There are a number of different directives of the same general
as the “XH" direcive. For example, the “%Z" directive on the
signal "CK .P0-4" states that the clock timing refers to the time at
which the output of the gate changes. If muiltiple directives are
ven after a signal, such as "«HZ", then the first letter refers to the
ﬂlm level of gating after the directive, the second refers to the second
level of gating, etc There is no limit on the length of a directive
string.

3.6 CASE ANALYSIS

Sometimes the timing analysis of a drcuit requires that a
number of different cases within the circuit need to be analyzed, one
after another, in order to check their timing propertes. This
requirement occurs because the timing of the drcuit is a2 complex
function of the values of some signals, which cannot be analysed
when combined using the “STABLE" and “CHANGING” states.

Figure 3-8 gives a dircuit example which needs case analysis,

If the circuit is analysed without case analysis, where the signal
“CONTROL SICNAL” has the value “STABLE", then the delay
from the signal “INPUT" to the signal "OQUTPUT” would be
calculated to be 40 nsec The problem is that the Timing Verifler
wouid be unable to determine that both of the multiplexers could noc
select the "1" input at the same time To use case analysis, the
designer would specify that the signal “CONTROL SIGNAL” needs
to analysed separately for the cases when it is true and when it is
false. For the first case, the Timing Verifier would then set the
signal “CONTROL SIGNAL” to the value *0" whenever the circuit
would normally set it to the value "STABLE”. For the next case, it
would set it to the value “1” whenever the circuit would normally set
ic to the value “STABLE". In this way, the two select lines on the
multiplexers would always be set to complementary values, and the
delay from the signal “INPUT"™ to the signal "OUTPUT” would be
aalculated to be 30 nsec for both cases.

8.6.1 Case Specification

The designer must identify and specify thase signals which
need to be handled by case analysis He does this by creating a text
flle specifying the cases that need to be evaluated. This text file
explicitly states which signals need to have their “STABLE" states
mapped into either “0” or "I" values ("FALSE" or “TRUE").
Consider the fallowing specificarion:

Xul, Yol Zus
XeB, Yod,Ken, Zans

'@ NSEC
CELAT
tnur | H

1 f - \

L ! 20 NSEC i |

0.9

: DELAT j' L,/s//
.]

|
I
CONTROL SIGrsa ‘

H 18
= T
ELF'IV- Tll—-!

— CELAT 1

1@ NSEC I :B

H ocELAr
~——

i 20 NSEC]

DELAY=2.0

| aF

G

Figure $-6
Example of circuit requiring case analysis

This specification specifies 6 cases to be evaluated. The text before
the first semicolon specifies two cases: The first with "X «1,Y«=0,Z=0"
and the second with “XelY=0Z«1". The construct "SIGNALax"
says to consider the cases of that signal being 2 "0” and a “I”. The
semicolon delimits one set of case analysis specifications from the
next. The second line of this example specifies 4 casas m be
examined. They are “X«0,Y=0,K=0Z=0", "Xa0,Y=0K=0Z=1",
“X20,Y=0,K=12Z«0" and “X=0,Y=0K«12Z=1".

3.7 TECHNIQUE USED FOR CIRCUIT EVALUATION

. The first step in evaluating a circuit is to initialize to
“UNDEFINED” all signals without assertions. Signals with clock
assertions are set to the value specified. Signals with stable
assertions are set to the value “STABLE" during the time specified
by the assertion, and to the value "CHANGCING” the rest of the
time. Signals which are specified in the case analysis file will be set
to the value specified for the case being calculated whenever. they
otherwise would be given the value “STABLE".

In the next step, the Timing Verifler evaluates all of the
primitives which define the drcuit by looking at their current input
values and based on these calculaﬂnf new output values Whenever
a new output value is different from its old value, all of the
primitives that are driven by that output are added to a list of

rimitives to be evaluated during the next pass of the Timing

erifier. This process continues, reevaluating those primitives
which have had their inputs changed, until all of the signals stop
changing. At that point, the Timing Verifier knows the value of
€ach signal over the clock period, for the first case to be analyzed.

The next step is to evaluate all of the set-up and hold times,
and minimum pulse width checkers, based on the value of their
inputs, and to cutput error messages reporting any errors detected.
This error checking includes set-up and hold time constraints
sgedﬂed both by the set-up and hold time primitives and by the
"%A" and "&H" evaluation directives.

At this paint, the first case has been evaluated, and the
Tlming Verifler is ready to evaluare the next case. This involves
changlng the values of those signals specified by the case analysis
file, and reevaluating those primitives whose inputs are affected.
This process is continued, as in the first case, until all signals stop
changing. At that point, the second case has been checked. The
Timing Verifier will continue this process, Incrementally
reevaluating the network, until all of the cases specified by the user
have been checked.

4 CIRCUIT VERIFICATION EXAMPLE

Figure 3%-5 shows an circuic example to be analysed by the
Timing Verifier. This circuit consists of a 16-word by 32-bit

ister file, a $2-bit output regiscer, a 2-input multiplexer which
:eﬂ:u between the read and write addresses for the register file, and
several The circuit is designed to run with a cycle time of 50
nsec. The default wire delay used by the Timing Verifier in
checking this drcuit was 0.0 to 2.0 nsec, and the defaulk clock skew
for the clocks was - 1.0 to +1.0 nsec The time unit used in the
ation of the clocks and assertions is 6.25 nsec, which gives 8
units per cycle

One of the most useful features of the Timing Verifier is its
ability to analyse all of the timing properties of a design as the
design proceeds, rather than having to wait to be used until the
design is completed. As such, it can input the description of this
circuit exampﬁ. which would :{pica.lly be a small secton of a much
larger system, and determine if

The stable assertions on the input signals which are not
generated In this circuit are cructal to the ability to verify a design in
pleces. For example, the assertion on the signal "W DATA S0-6"
states that it is stable from time 0 to time 6, and that it may be
changing doring the rest of the cycle, Le. from time 6 to time 8.
The assertion on the signal "READ ADR S4-9” says that it is stable
from time 4 to time 9, and may be changing the rest of the cycle, ie.
from time | to time £ This may seem a little strange at first, but the

tme of the circuit is 8 clock units long, and the assertion
specification is taken to be modulo the cycle ime.

t contains any timing errors.

Considering interconnection delays on Incomplete designs
resents some interesting problems If the actual wire delays are
own for the signals in the drcuit, they can be used in the analysis.
If not, the Timing Verifler will use a default wire delay, unless the
designer specifies wire delays for specific signals. The default wire
delay of 0.0 to 2.0 nsec was used for all of the wires in this example,
t for the address lines on the r file, where the designer

5 ed that it could be anywhere from 0.0 to 6.0 nsec.

Figure 4-1 exhibits the summary output listing generated by
the Timing Verifier, showing the values of the signals over the cycle
time of the circuit. For example, the first entry says that the address
lines "ADR<0:3>" are stable at the beginning of the cycle, and start
changing 0.5 nsec into the :{de. They then go stable 5.5 nsec into
the cycle, and stay stable until 25.5 nsec into the cycle. They are then
changing from 25.5 nsec to 30.5 nsec, after which point they stay
stable for the rest of the cycle.

Figure 4-2 contains the set-up and hold time errors which
were detected by the Tlmlnivmﬁer. The first message states that
the “SETUP HOLD CHK” primitive specified a set-up time
interval of 3.5 nsec, followed by a hold time of 1.0 nsec, and that the
set-up time was violated. The next two lines give the values seen by
the "SETUP HOLD CHK" primitive on the data and clock inputs.
They show the data not becoming stable until 115 nsec into the
cycle, and the clock starting to rise 11.5 nsec into the cycle. Thus, the
set-up time intervai was missed by the full 3.5 nsec The
next error message shows that the set-up time interval on the output
register was violated. The data didn't go stable until 7.5 nsee into

the cycle and the clock starting rising ar 49.0 nser, missing the
specified set-up time interval of 2.5 nsec by 1.0 nsec.

Valuas of all slgusls

ADRCD: D> 0.5, Si15.5, C125.5 $:.5
cx P04 . 121.8° F:24.0, 0:28.9, Ri149.0 (ecsxtaat vatme)
J2-3 » Latl *. l:l:!.s. F: I‘I.‘. 9:19.9 (consteat velwe)
pd-8 v . ’_: . g:_z’4so. 1:26.9, F:40.0 (occasteal valse)
ATl (8., G158, 5:28.5, Ciow.0, Si43.S
- 1 [} H . t .
m‘.'xm S 9<0:3> 9.9, 1.0, Fi24.0, ©128.0, 1:49.0
UTA Sl 0:8! K15, 1113.5, Pz, oud.e
1 S8 . .] 137
VAR idR se-cand’ 10,0, C:37.5

Figure 4-1
Timing Verifier output showing values of signals

Setsp, Held snd Ninimua Pulse Width errore ...

31“"“10 srrory Setup Time ¢ J.3, Hold Tine = (.0

Sard TNRvY - Ao 4 9.0 BilsSaltiShoTadsh el
Selup tims errory Setup Tine s 2.8, Hald Tine ¢ L.§
Shed Pt i a8 ke b LMR 8RR 1SS
Fi 42
Sez-up and houmcimmfuund by Timing Verifier
5 REPRESENTATION OF SIGNAL VALUES 6 VERIFICATION OF THE S-1 MARK ITA
The Timing Verifier represents in memory the value of each The SCALD Timing Verifler has been used in the design of

signal over the drcult cycle time. It uses 2 linked list 1o do this, 5 high performance proceusor, the S-1 Mark IIA [9] This use has
which has the formaz shown In Figure 5-1. For each signal, there ls served to validate the atility of the entire present approach to
3 "VALUE BASE" record with a free storage link, a fleid to store yming verification, and has alio provided interesting performance
the skew, 3 pointer o the evaluaton string, and a pointer to the grarisics on the Timing Verifier operation. The Mark IIA is 2
finked list representing the signal value The “VALUE® record highly pipelined processor which is ed to usually issue a new
es the signal value and the width of that value The sum of ingrrucrion every 50 nsec. The machine has a vector Instruction unit
Cf the "VALUE WIDTH" fields on the linked list is required t0 which Is designed to process vector operands at a pipelined raze of
exactly equal the cycle dme of the circuit being verified. 95 nsec.

The Timing Verifier has been used during much of the past
‘ur. on » daily basis, to check the design for timing behavior as it
a3 progressed toward implementation. The approach taken has
The "SKEW" fleld is used to represent skew caused by been to work on the design for about a day, and then to enter the
delaying the signal by a varizble amount of ume. Consider the new design into the SCALD sguem. via the Stanford University
example in Figure 5-2 The has a minimum delay of 50 nsec Drawing System (SUDS). The design ls then processed through the
and 3 maximum delay of lo.opn‘:ec. The two lngut signais will be- SCALD Macro Expander, which checks the design for syntax errors
ORed together as If the gate had zero delay, an the value of the and generates a file ‘which represents the ex anded design. The
output signal will then be de:;zd by the minimum delay. The skew execution statistics for running the Maco Expander on the S-1
fleld will then be set to the difference between the maximum and the Mark I system (which has a throughput rate approximately
minimum delay of the By doing this, rather than by using equivalent to an IBM 370/168) for a portion of the Mark IIA design
"RISING" and 'FALLIJE&‘:- values to represent the uncertaintity in cansisting of 6357 MSI ECL-10K and ECL- 100K chips is shown in
when the signal will transition berween a 2ero and a one, the Table 8-1; this Yardan contains 97,709 2-input gates-equivalent of
symmetry information about the width of pulsea Is preserved since logic and 1,803,136 bits of high speed memory. These execution
rising and trailing edges of the signal are delayed by the same seatistics are broken down into three parts. The first part is the time
amount. When mogenng a technol in which the rising and required to read the input files and build the dara strucures to
falling values of signals aze different, this algorithm will have to be resenit the design. Next, the Macro Expander does an expansion
mod; to take this asymmetry into account. the d to generate a summary fisdng, and builds up a data
structure which resolves ail synomyms between different signals (Pass
1). Finally, the Macro Expander expands the design again, this time
onl;:tﬂng the fully elaborated design for use by the Timing Verifier
This separate representarion of skew can be used in essendally or LD Layout Program (Pass 2)
any siruagon in which A signal value is merelwnﬁng delayed tg a
variable amount. However, If two signals are g combined, then
the skew of the combined value in eral cannot be simply MACRO EXPANSION EXECUTION STATISTICS Time,
represented with a single field. Because this, when two signals are
combined, their skew is Inserted into the resultant ng;ul
or

representation using the "RISING” and *FALLING" vaiues Reading iriput files and buikding data stuctures 192

example, the output signal “Z* from the last example s shown In Pass | of macro expansion 342
Figure 5-8 with its skew Inserted into the signal value. Paas 2 of macro expansion 6.18
18.52

TIMING VERIFIER EXECUTION STATISTICS

The "EVAL STR PTR" field is used to wack of the Reading input files and building dara structures 445

evahiation string associated with the signal value For example, If Generating cross reference istings 0.72
the evaluation string “HZZW" is givmig:n the input of a g'ne,P then zm‘"‘ clreuie e 6.75
each letter specifies how to evaluate a subsequent level of garing. eneracing timing summary lisdng 222
Each gate will remove the letter which specifies how to evaluate I, 12.14

and will pass along the rest of the string and the output value from N
the gae, in order o specify how to evalﬁue the next lavel of gating. Total for bath Timing Verifier and Macro Expander: 2886

The string "HZZW" specifies the evaluation of 4 levels of garing
» . Table 6-1
;mh th:L controlling the first level, and the “W* controlling the Execution statistics for 8357 chip example

VALLE San ATCOM

e e

ey m——

FiEE S108AGE LI
g PR -
L -]
wa. I e
Al EECom VAUl o L =COw
AT VR PTR = N g PR) NO(T L e
S Wt IR, WLt NPUL VAL
VLLE UiD™ VAL VIO WL JIDTe
Figure 5-1
Dara structures used to represent signal values
CRLATE, 19
2 a on ?
4 L} Z
L/
e | ! S L__°
T8 Y10 Ta2 T8
! e J 1 L_e
z To2tt Twed
e [R]] [F]
Yal§ Te2® Tedf
' URLE WG apCom
LY Ll NECOm UL SECOT VAUE WCOD
NiL
|] L)) []
NiL 15 » 1]
Figure 5-2
Example showing how skew is handled
: @ [R 1 7]
Teif Ted® Vel
LUOS & -7
LN VRLE RITOND L U -
L[] * L]
~i L] s
L R RECOND . vaus efoeo
L
] r
2 9

Figure 5-3
Output signal Z with skew represented In signal vaiue

The Timing Verifier takes 4.45 minutes reading in the output
from the SCALD Macro Expander, and then building up i= data .
structures. It there upon generates some cross reference lstingy,
which aid the designer in finding where signals are generated and

where they are used within the design. The next step is the Timing
Verification. This takes 6.75 minutes, or about 49 milliseconds per
primidve. In doing this verification, 20,052 events were processed,

) — e

where an event is caused by an output being given a new value,
which in tun causes all primitives which use that output value to be
updated. An event then took 20 milliseconds to process. This
verificadon was for a single-—case verification.

The amount of time required to analyze a case ls proportdonal
w the number of events which must be processed for that case In
general, only those signals which are affected by the case analysis
need to be recalculated. The Mark IIA procemor i3 a pipelined
processor, in which every pipeline must take the same amount
of time to execute; it was therefore found that case analysis is only
rarely required. In fact, case analysis was found to conter so little
advantage in the Mark LA 'design process that It wasn't
implemented until near irs end. However, for some design styles, for
instance thase ln which variable length cycles are used, case analysis
capability is very important

Table 6-2 gives the storage required for data structures used
during the Timing Verification, Representing the circuit description
is the single largest part of this requirement, requiring 37.8% of the
87 rnqa.Eyus of total memory used The circuit d tion {s
comprised of a characterization of each primitive used, with a
description of which signals were passed to each of its parameters.
This is the main data structure used while the circuit is being
verified, and averages in size to 260 bytes primidve. The
PASCAL compiler used doesn't pack its records, so all fields require
four bytes, except characters and booleans, which take ane byte.

The next far, part of the. storage requirment goes to the
storing of signal values A linked lst is stored for each signal in the
system representing its value For the current example, there were

39,152 of these value lists stared, each of which had a base record
followed by an average of 2.97 value records. The average amount
of memary needed to stare the value of a given signal was then 5%
bytes. The storage area for keeping track of signal names is used to
point to the value definition for each bit of a signal vector, and to
record which primitives define and use a given signal; It required
1161 of the total storage used. The sring space, which stores the
text strings used by the other data structures, accounts for 1082 of
the storage space The “"CALL LIST ARRAY" tells which
primitives need to be reevaluated when a given bit of a signal is
updated, and accounts for 6.9% of the soage space The
*MISCELLANEOUS" ca:zi_nry represents 2 number of minor data
structures used within the Timing Verifier, which represent 0.7% of
the The Timing Verifier program consists of 4700 lines of

PASCAL code requiring 214K bytes of memory when loaded with
run-time support.
STORAGE TYPE K BYTES £ OF STORAGE
CIRCUIT DESCRIPTION 2149 37.8%
SIGNAL VALUES 1843 2.4%
SIGNAL NAMES 680 1162
STRINGS SPACE 800 1062
CALL LIST ARRAY 89 6.9%
MISCELLANEOQUS 41 0.7%
5684 100.0%
Table 6-2

Storage required by Timing Verifier for 6357 chip example

In general, a compiler which packed its records to take up
minimum memory s, would permit a ificant reduction in
storage requirements for the Timing Verifier. Also, additional
p ming to optimize the data structure for space could result in
a non-negligible sworage saving. The approach taken for this
research was to get a system up and running quickly, in order to test
the basic concepts of this approach, and not to attempt to produce an

timized implementadon for use in a production environment
?;en so, this system has been sufficiently efficlent to be used vir\y
extensively and highly effectively in the design of the S-1 Mark
processor.

7 CONCLUSIONS

The SCALD Timing Verifier has been a very efficient tool
for discovering timing errars in the design of large digital systems.
It is highly cost-effective from the standpoint of requiring lictle
effort from the designer beyond what is needed to execute the basic
design. [t is also computationally efficient, allowing a large design to
be verified in a reladvely small amount of computer time and
memory.

Once the timing constraints have been verifled, then a simple
logic simulator — ane which does not have to worry about any
tming problems — can find the refatively likely logic errors. The
improbable logic errors can then be found either by a hardware
:lu::hmr::d o‘: a pmt‘otype T:I:‘timing in '?o:h the prototype and the

ction implementation can t
Tlmlngp e p en be checked with the

8 ACKNOWLEDGMENTS

I would like to thank Farest Basker and Bill vanCleemput for
the constant support and guidance they have provided throughout
the course of this research. The Fannie and jJohn Hertz
Foundaton's gracious su‘pgoﬂ has provided me the freedom to

ursue this research. Bil rLson. Mike Farmwald, and Jeff Rubin

ave been the first users of the SCALD Timing Verifier and their
patience and many suggestdons for improvement are most
appredated. My thanks also go to the Offlce of Naval Research and
the Naval Electranics System Command for the support to the S-1
Project which has provided the necessary environment for this
research, and to Curt Widdoes and Lowell Wood, whose tireless
efforts mace the formation of the S-1 Project possible

This work was in part performed under the auspices of the
US. Department of Energy by the Lawrence Livermore Laboratory
under contract No. W-7405-ENG-43.

9 REFERENCES

L. Chicoix, C, Pedoussat,], and Giambiasi, N, “An Accurate
Time Delay Model For Large Digital Network Simulation,”
Proceedings of the Thirteenth Design Automation Conference,
San Frandwo, Ca, june 1978, 54-60.

2 Harrison, R. A. and Ofson, D.], "Race Analysis of Digital
Systems Without Logic Simulation”, Pmceeding; of the Elghth
%m;&mwm onference, Atlantic City, New Jersey, June

3. Krohn, HE, r;l::gn Verification of Lar
Computers”, P in?‘ of the Fourteenth
Canference, June 1977, New Orieans, 377-386.

4 Kusik, R. and Wesley, P. “Hierarchical
Digital Systerns Development,” Proc. E
May 1976, pp. 26.3.1-26.3.8.

8 Losleben, P, "De Validation in Hierarchical Systems”,
Pmceadlﬁg: of the Twelveth Design Automaton Conference,
Boston, Mass, June 1975, 431-438.

6. McWilllams, TM. and Widdoes, L.C, "SCALD: Structured
Campul:eAr-Aided Logic Design,” l_l’ro\:_:ren:ling: ;f the Flfteenth
Dulsn utomation ference, Las Vegas, Nev, June 1978,
71-271. !

7. McWilllams, TM. and Widdoes, LC, “The SCALD Physical
Design Subsystem,” Proceedings of the Fifteenth Design
Automation Conference, Las Vegas, Nev.,, June 1978, 278-284.

8. Ruehil, A. E, *Electrical Considerations in the Computer Aided
DHT of Logic Circuit Interconnections,” Pmceczin of the
Tenth Design Automation Conference, June 1978, 262-266.

Scale Scientific
esign Automation

c Silmulation for
, Boston, Mass.,

9. S-1 Project Staff, "Advanced Digital Computing Technology
Base Development for Navy Applicadons: The 5-1 Pro
Prepared for the Naval Systems Division, Office of Naval

Research, September 30, 1978. (UCID-18038)

10. Szygenda, S.A., “TEGAS2—Anatomy of a General Purpose Test
Generation and Simulatdon System for Digital Logic,”
Proceedings of the ACM IEEE Design Automation Warkshop,
June, 1972, 116-127.

11. vanCleempur, W.M., °An Hierarchical Language for the
Structural Descripdon of Digital Systems,” ings of the
Fourteenth Design Automation Conference, June 1977, New
Orleans, 377-385.

12. Wold, MA,, Verification and Performance Analysis”,
Proceedings of the Fifteenth Design Automation Conference, Las
Vegas, Nev, June 1978, 264-270.

